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ABSTRACT

Broader use of virtual reality environments and sophisticated animations spawn a need for
spatial sound. Until now, spatial sound design has been based very much on experience
and trial and error. Most effects are hand-crafted, because good design tools for spatial
sound do not exist. This paper discusses spatial sound authoring and its applications,
including shared virtual reality environments based on VRML. New utilities introduced
by this research are an inspector for sound sources, an interactive resource manager, and
a visual soundscape manipulator. The tools are part of a sound spatialization framework
and allow a designer/author of multimedia content to monitor and debug sound events.
Resource constraints like limited sound spatialization channels can also be simulated.

Keywords: spatial sound authoring, virtual reality environments, multimedia, spatial-
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INTRODUCTION

More and more applications use virtual real-
ity environments including spatial sound as
a user interface. The demand for anima-
tions with impressive and immersive sound
increases, as audio-visual equipment which
can produce such effects becomes increasingly
available. Spatial sound has migrated from
special platforms to everyone’s desktop. This
is due to better general-purpose processors,
which allow spatial sound processing in soft-
ware, and hardware support, in the form of
audio cards.

Wide distribution of content including spa-
tial sound for virtual reality environments
over the internet was made possible with the
introduction of the Virtual Reality Modeling
Language (VRML 2.0 [Bell et al.96]). Even

though the specification does not cover all as-
pects of spatial sound, dramatic effects can
be produced. Available tools for producing
VRML content have some support for spatial
sound authoring, but in general they are not
sufficient. We have developed widgets [Con-
ner et al.92], user interface objects with en-
capsulated geometry and behavior, to con-
trol and show properties of soundscapes and
sound objects.

Spatial sound Spatial sound [Anderson-
Casey97] is modeled by many attributes. Di-
rectionalization can be modeled by binau-
ral ITD (interaural time difference), 11D (in-
teraural intensity difference), and pinnae ef-
fects [Begault94]. Distance cues are based
on delay, reverberation and loudness. The
space, consisting out of objects interacting



with sound waves, defines the reverberation
and first- (and higher-) order reflections.

Important for this paper is the following
definition:

A “soundscape” is a spatial region
in which sound sources, sound sinks,
and interactions between objects
with sonic results can share com-
mon media, geometries, and spatial
mappings. The media define such
sonic features as the speed of sound
within the soundscape, but can be
extended to include sonic reflect-
ing materials and reverberation at-
tributes. The geometries and spatial
mapping define how sound may be
distributed for sophisticated and/or
efficient audio rendering.

Authoring: Creativity and engineering
For spatial sound authoring, two disciplines
converge. An artist or content producer with
strong emphasis on creativity brings the ideas
or defines what should be done. Comple-
mentarily, skills from engineering are needed
to implement the space and actually pro-
duce the effects. An user interface for artists
should be intuitive and easily understandable.
For the same reason in computer graphics
different color models and naming schemes
have been developed [Kaufman96]. For the
sound designer, realism is not so important
as the achieved impression. For example
[Martens97], one might think about an vir-
tual environment for flying starships, like that
in movies and interactive games. Usually
they produce sound even in outerspace sound
waves do not travel through empty space.
The user of a spatial sound authoring tool
will create a soundscape with sound sinks,
sound sources, and objects interacting with
the sound waves. The sound objects have to
be positioned and might be attached to ge-
ometrical objects. Their attributes need to
be set. A development cycle comprising vi-
sualization, experiencing (i.e., listening with
interaction), coverage checking, experiment-
ing, evaluation and editing starts. Spatial at-
tributes like the image breadth also known
as localization blur [Blauert96, page 280], are

important because they suggest the size of an
object. In linear media (e.g., movies) this is
not a big problem because sink (i.e., listener)
positions are fixed. In interactive media the
listener has total freedom to move around
a sound objects (e.g., a piano that will be
walked around cannot be well expressed by a
point sound source).

Requirements Requirements for a spatial

sound authoring toolset on which we have
concentrated are

e soundscape visualization,

soundscape manipulation,

sound object visualization,

sound object editing, and
e sound resource monitoring.

When developing an authoring tool for
spatial sound, the underlying system, de-
scribed by the spatial sound API, defines a
lot of the functionality and might restrict
the generality and portability of the applica-
tion. It is important to keep in mind that
the main task for the author is to develop
content, and that rendering issues across dif-
ferent platforms should not interfere. An ex-
ample of modeling rendering issues was given
in [Brown-Allard97]: the attenuation of the
frequency spectrum of a waterfall (part of a
“Jungle Island” demonstration) was modeled
by two sound sources with different audible
ranges and frequency bands. This made it
possible to hear the rumbling of the waterfall
in the distance as well as high frequency com-
ponents when sufficiently close. The effect
was impressive, but what if the sound ren-
derer supports distance-dependent frequency
attenuation? Would not it be better if the
API and also the sound authoring tools hid
such details from the user? The same philos-
ophy can be taken for sound occluders and
first-order reflections.



PREVIOUS RESEARCH

Spatial Sound Application
Programmer Interfaces

The current VRML [Bell et al.96] specifica-
tion has only a sound node to support spa-
tial sound, and does not define soundscape at-
tributes to describe reverberation. A browser
might guess the size of the space and then
set important reverberation parameters for
sound spatialization. The Java3D [Sowiz-
ral et al.97] specification is in that regard
more advanced, supporting a notion of a
soundscape, an application area with aural
attributes capturing delay times and reflec-
tions. These APIs are good for multimedia
content, but are not suitable for simulating
room acoustics [Savioja et al.97][Dalenbéck et
al.94], which are much more complicated and
require a more physical approach — specifica-
tion of the material and transfer functions of
sound objects (e.g., a wall) in the simulated
space. Such simulations are not yet done in
realtime. Realtime processing becomes possi-
ble if the room parameters are processed be-
forehand [Reilly-McGrath95).

Spatial Sound Authoring Systems

Most spatial sound authoring systems are
closed and do not allow users to develop
content for different backend configurations.
A multiple audio window system [Cohen93]
gives each user a visual, egocentric view on
a scene and allows realtime interaction and
sound object editing based on direct manip-
ulations and cut & paste metaphors.

In some shared virtual environments (e.g.,
AlphaWorld) [Waters-Barrus97], users not
only explore and meet, they also extend
and build the space which they inhabit.
Building such a space which is part of a
larger system includes sound. The restric-
tions/constraints in such groupware applica-
tions are even tighter, to avoid the social in-
frastructure becoming damaged through the
creation of areas which are inaccessible due
to resource load on either the server or client
side.

Another important topic for authoring
auditory scenes is the temporal relation-

ship between sounds. This is addressed in
[Darvishi97], which employed a 2D graph
based or textual interface.

SOUND SPATIALIZATION
DEVELOPMENT ENVIRONMENT

Our prototype environment consists of a li-
brary to manage sound processing, a visual
soundscape controller (to handle mapping be-
tween geometric application space and sound-
scape), a sound resource allocation monitor,
a soundscape visualizer, and an editor for
sound objects. The following subsections in-
troduce the modules and the data flow.

Soundscape Control

During the design of a helical keyboard
[Herder-Cohen96], we became aware that
global control of the mapping between visual
space and acoustical space could improve the
intended experience. A major part in the de-
sign was the soundscape. All keys had to
be differentiable by location, especially direc-
tion. If the listener is placed in the center,
then keys playing in the far upper part or
lower part could not be well differentiated
by azimuth, and also the volume for them
was too low. As a solution to these prob-
lems we developed the soundscape deformer,
a 3D widget that controls the scene space —
soundscape mapping!. The scene space can
be shifted around, which induces a transla-
tion of the soundscape. In that regard the
soundscape deformer can be seen as a general-
ization of stereo panning for 3D (e.g., balance
potentiometer of an amplifier, also known as
a pan [for panoramic| pot).

The soundscape deformer, shown in Fig-
ure 1, provides a visual representation of a
linear mapping. A sphere in the center repre-
sents the case in which the scene space is di-
rectly mapped to the soundscape. The sound-
scape is fully interactively manipulatable via
handles (the small boxes on the outside),
bounding box, and orientation axes through
a pointing device. Figure 2 shows the sound-
scape reduced in height, flattening the spa-

lthe mapping itself can be represented by a 4x4
matrix



Figure 1: Soundscape deformer

Figure 2: Soundscape deformer: flattening

tial audio position of all sound objects to a
plane. Another example, shown in Figure 3,
reduces the horizontal dimension, compress-
ing the left<sright attribute. As an extreme
example, shown in Figure 4, the sphere can
be reduced to a point, giving a diotic sound-
scape, in which all objects seem to be at one
place inside the user’s head.

Portable Content: Authoring For
Different Platforms

A commercial application or multimedia
product might be required to run on differ-
ent platforms, which heterogeneity must be
considered when doing spatial sound author-
ing.

Output devices Backends vary; a sys-
tem can use loudspeakers in single, stereo,
transaural (stereo with crosstalk cancelation),

Figure 3: Soundscape deformer: narrowing

Figure 4: Soundscape deformer: extreme di-
otic case



and array [Amano et al.96] configurations.
Headphones or nearphones are also widely
used. Across these devices the amount of im-
mersion or believable illusion differs drasti-
cally. Despite the fact that most people don’t
have an absolute tone hearing, the frequency
spectra of the output device needs to be ad-
justed and considered.? If a headphone can-
not produce a rumbling sensation in the stom-
ach, then the author who creates multimedia
content for a broad range of platforms needs
to consider that, and might program a differ-
ent or additional acoustical event.

Spatialization backends The design of
spatialization backends depends on the out-
put devices surveyed in the paragraph above.
Part of the spatialization process involves
processing filter functions (convolution) and
reverberation. Such processing can be done
either in hardware [Wenzel et al.90] or soft-
ware [Intel97]. In the later case the main CPU
load might increase unacceptably if the spa-
tial sound design did not anticipate such scal-
ability. Otherwise the software for spatial-
ization disables resource allocation and the
acoustical effect cannot be achieved.

Sound processing Sound processing — in
the form of audio (e.g., wav) files, MIDI syn-
thesis, or physical models — may use system
resources and compete with other processes
like spatialization. A good system maintains
balance and optimizes for the user based on
psychoacoustic metrics.

Monitoring Sound Resource Allocation

How can the above mentioned problems be
addressed during the process of spatial sound
authoring? One impractical solution would
be to have all platforms available and to do
tests, but even so not all configurations could
be covered.

We propose to monitor resource requests
during the authoring process. This will help
to inform the author and sound developer
about active sources and resource allocation.
We have developed a sound spatialization re-

2For example, the head-related transfer function
needs to be equalized for the headphone in use. Even
better would be individual HRTFs.

source manager [Herder-Cohen97], including
a monitor for the requests and allocations.
The panel shown in Figure 5 gives access to
the number of sound sources and sinks, the
number of active (i.e., requested) sources, the
number of ambient sources, and the number
of virtual sources in a scene. Virtual sources
represent a cluster of sound sources which can
be spatialized as a single source, mixing the
audio signals before the spatialization is per-
formed. Ambient sources do not use spatial-
ization resources, but produce a load for the
sound generation mechanism.

Simulating Resource Allocation Via
Resource Constraints

How would a certain kind of content be pro-
duced on a system with few spatialization
channels? Such simulation of spatialization
resource manager resources (i.e., the num-
ber of spatialization channels) can be dynam-
ically constrained via the control panel (as
seen in Figure 5). This allows monitoring of
resource allocation across finite capabilities.
In the same way of course it is made audible
and allows the designer to compare different
configurations.

Spatialization Resource Visualizer

The spatialization resource visualizer is an in-
spector for sound objects in the soundscape,
a visual debugger for sound objects in vir-
tual reality environments. These are sound
sources and sinks, generalization of listener
and microphone. Figure 6 shows on the left a
test scene with the corresponding sound ob-
jects in the visualizer on the right side. A spe-
cial case involves virtual sound sources which
do not exist in the virtual reality environ-
ment scene and are generated during the clus-
tering process of the spatialization resource
manager. The set of sound sources can be
selected (using the preference menu, seen in
Figure 5) to focus on all, active, virtual, or
ambient sound sources. A sound source can
be displayed using its core range, which is an
ellipsoid, representing a zone with maximum
intensity [Bell et al.96] and its audible range,
shown as a translucent ellipsoid, represent-
ing the space in which the source is audible.
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Figure 5: Sound spatialization resource manager panel

Between the two ranges the intensity drops
off according to the square of the distance.
Priority and intensity of the sound node may
be included as textual values facing the user.
Different states of a sound node can be con-
veyed using color codes for the core range.

Sound Source Editor

The editor shown in Figure 7 allows one to
edit and monitor sound nodes [Bell et al.96]
in a virtual reality runtime environment. The
user invokes the editor via mouse click on a
sound node in the spatialization resource vi-
sualizer.

A source radiation pattern is defined by
a core range and audible range, represented
by the sound node fields minBack, minFront,
maxBack, and maxFront. The resource allo-
cation algorithm uses the priority value to
rank the sources. The fields direction and
location change orientation and position of
the sound node in its local coordinate space.
Changes are immediately manifested in the
spatialization resource visualizer. If the field
values are modified during runtime by the ap-
plication, the fields in the attached editor are
updated. This allows textual sound behavior
monitoring of a scene.

Tool Data Flow

Figure 8 shows the data flow between the sys-
tem components. All tools keep each other
up-to-date. Changes from the virtual real-
ity environment propagate to the sound node
editor directly. Requests for sound resources
are processed by the sound spatialization re-
source manager and then visualized by the
Spatialization Resource Visualizer (seen on
the right of Figure 6). The user can select
a resource in the visualizer and invoke the
sound node editor for the associated sound
node. A change here would propagate back
to the visualizer via the runtime environment,
and resource manager. The resource manager
updates the panel, so that numeric informa-
tion about the resource allocation process is
available. The panel can also change param-
eter of the allocation process, which will also
propagate through the tools.

Implementation

Our prototype was developed on an SGI In-
digo 2 Extreme, connected to an Acoustetron
IT from Aureal/Crystal River Engineering
and Roland Sound Modules. The Open In-
ventor graphics toolkit [Wernecke94] was ex-
panded for classes (nodes) to support the spa-
tial sound extensions, which were used for our
virtual reality applications. Open Inventor is
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a superset of the VRML 1.0 standard [Bell et
al.95], which does not support sound or dy-
namic behavior of objects. For the sound ex-
tensions of Open Inventor, we followed the
VRML 2.0 standard [Bell et al.96], but added
a node for sound sinks. This allows scenes to
have multiple sinks and a sink which can be
separated from the viewpoint.

CONCLUSION AND FUTURE
RESEARCH

My colleagues, students, and I have devel-
oped a sound spatialization framework, in-
cluding visual tools for soundscape manipu-
lation, monitoring, and debugging. The tools
enable spatial sound authoring for multime-
dia content. The system can be easily inte-
grated into an virtual reality authoring sys-
tem and its principles are widely applicable.

More visual tools could further enhance
the spatial sound authoring process. We plan
to develop a module for sound source trac-
ing using trajectories and visualizing the con-
vex hull to find out if a source covers a given
area for the dynamic behavior. Also a mod-
ule to visualize statistical data like average
orientation, maximum velocity, average ve-
locity, maximum intensity, average intensity,
average audible range, etc., would complete
the system. For testing and comparing sound
spatialization systems, standard tests are re-
quired, as are already done for graphics sys-
tems.

The described editing facilities cover only
directional sound as given by the VRML 2.0
specification.  More sophisticated systems
would handle sound reflectors, sound occlud-
ers [Tsingos-Gascuel97], and reverberation
parameters of the space.
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